

Climate change researches at the Hungarian Meteorological Service, Past-present-future

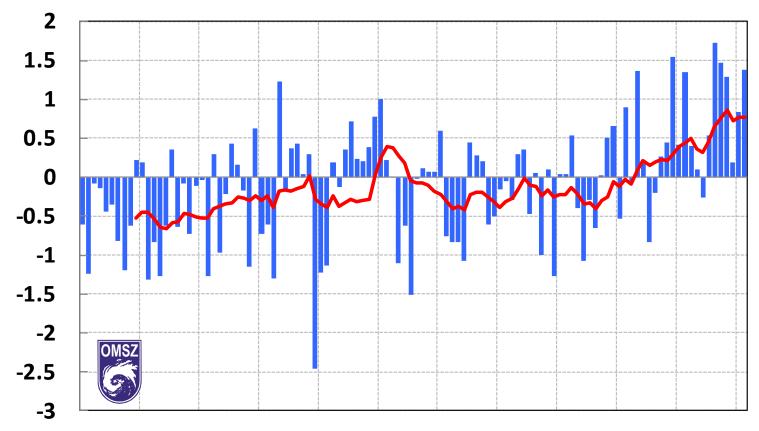
Zita Bihari, Mónika Lakatos, Gabriella Szépszó OMSZ, Climatology Division

Main activities

Climate researches

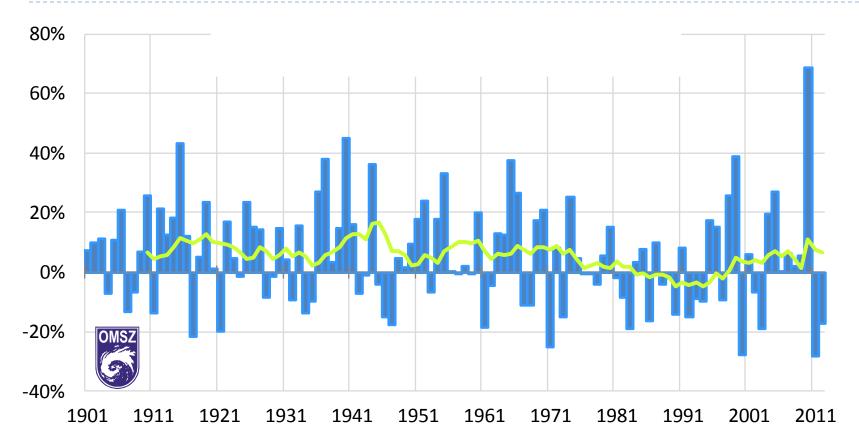
- Past, present: mathematical statistical methods
- Future: dinamical methods

Monitoring of the past and present climate


- Hungarian Meteorological Service (OMSZ) has long data series
 - Meteorological measurements begun in the second half of 19th century
- Data processing with statistical methods
 - Developed at OMSZ
 - Accepted on international level
 - MASH Multiple Analysis of Series for Homogenization (Tamás Szentimrey)
 - MISH Meteorological Interpolation based on Surface Homogenized Data Basis (Tamás Szentimrey, Zita Bihari)

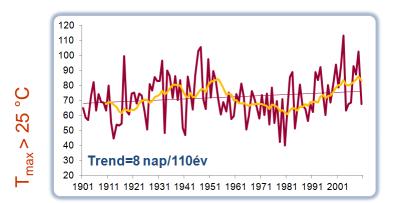
Application of methods

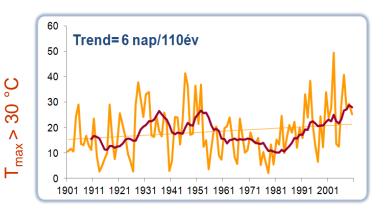
- Analysis of long time data series
- Creation of gridded databases
- Analysis of extreme values

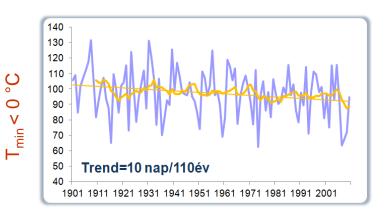

Annual mean temperature anomalies (°C) relative to 1971-2000, 1901-2012

1901 1911 1921 1931 1941 1951 1961 1971 1981 1991 2001 2011

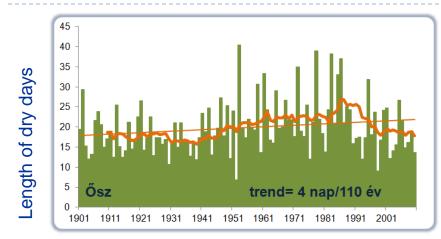
Change between 1901-2012 : 1.08°C 90%-os confidence interval [0.71°C, 1.44°C] Change between 1981-2012 : 1.31 °C 90%-os confidence interval [0.69°C 1.93°C]

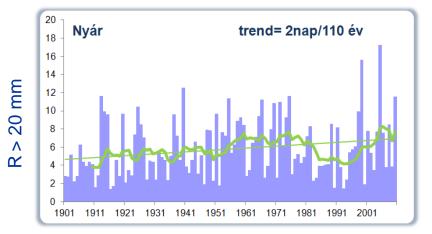

Annual precipitation anomalies (%) relative to 1971-2000, 1901-2012

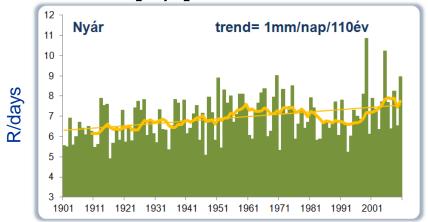

Change between 1901-2012 : -7.3% 90%-os confidence interval [-15%, 1.01%] Change between 1981-2012 : 10.8% 90%-os confidence interval [-7.7%, 33%]


Observed temperature extremes

Summer days [day]

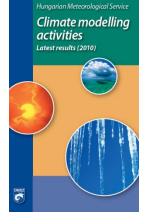

Heat days[day]

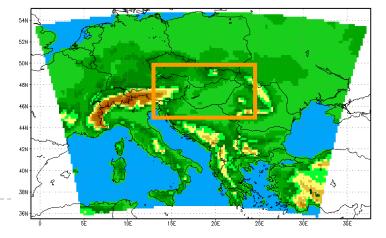

Frost days [day]


Observed precipitation extremes

Length of dry days [days], autumn

Number of days with precipitation> 20 mm [days], summer


Intensity of precipitation [mm/days], summer


Climate dynamics activities

• Simulations with 2 adapted regional climate models (RCMs):

	ALADIN-Climate	REMO
Period	1961–2100	1951–2100
Resolution	10 km and 31 levels	25 km and 20 levels
Scenario	A1B	A1B

 Using European RCM results (from ENSEMBLES project, 25 km resolution)

Application of model results

- Quantitative impact studies based on RCM results in cooperations with other partners, e.g.:
 - Hydrology: rivers and lakes (CLAVIER EU FP6 project)
 - Inland waterway transportation (ECCONET EU FP7 project)
 - Vulnerability of urbanized areas (ORIENTGATE SEE)
 - Climate change impacts in context of nuclear power plant extension (Paks)
 - Urban and wind climatology (at OMSZ, next slide)
- National Adaptation Strategy: National Adaptation Geographical Information System – detailed sectoral and geographical information for adaptation

Urban and wind climatology

- Study of climatology over urbanized areas
 - Dynamical downscaling of raw RCM outputs with a town energy balance model to 1 km resolution
 - Test simulations and validation mainly for Budapest
- Preparation of high-resolution wind climatology information:
 - Wind climatology information are needed at higher atmospheric levels (75-100 m) before installation of power plants
 - Downscaling of coarse resolution re-analyses to 5 km resolution for Hungary using a numerical weather prediction model

Thank you for your attention!